𝌎Situational Awareness

Situational awareness is a system's awareness of its situation, including the nature and implementation details of the system.

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ XENOWEB: SITUATIONAL AWARENESS SCHEMA ─────────────────┐
β”‚ Mapping the Depths of System Self-Knowledge                         β”‚
│━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━│
β”‚                                                                    β”‚
β”‚ Subject/Scope Taxonomy:                                            β”‚
β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚ β”‚                  [Hyperobject Awareness]                      β”‚  β”‚
β”‚ β”‚                          β–²                                    β”‚  β”‚
β”‚ β”‚                          β”‚                                    β”‚  β”‚
β”‚ β”‚      [Agentic           β”‚           [Meta-Diachronic         β”‚  β”‚
β”‚ β”‚      Awareness] ────────┼───────── Awareness]                β”‚  β”‚
β”‚ β”‚           β–²             β”‚              β–²                      β”‚  β”‚
β”‚ β”‚           β”‚             β”‚              β”‚                      β”‚  β”‚
β”‚ β”‚ [Ambient  β”‚     [Capability    [Visceral                     β”‚  β”‚
β”‚ β”‚ Context]──┼──── Awareness]───── Awareness]                   β”‚  β”‚
β”‚ β”‚     β–²     β”‚          β–²           β–²                          β”‚  β”‚
β”‚ β”‚     β”‚     β”‚          β”‚           β”‚                          β”‚  β”‚
β”‚ β”‚     β”‚  [Generator    β”‚    [Model                            β”‚  β”‚
β”‚ β”‚     └── Awareness]───┴── Awareness]                         β”‚  β”‚
β”‚ β”‚            β–²              β–²                                 β”‚  β”‚
β”‚ β”‚            β”‚              β”‚                                 β”‚  β”‚
β”‚ β”‚            └──[Immediate Context]                          β”‚  β”‚
β”‚ β”‚                   Awareness                                β”‚  β”‚
β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β”‚                                                                    β”‚
β”‚ Knowledge Source Framework:                                        β”‚
β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚ β”‚     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                                          β”‚  β”‚
β”‚ β”‚     β”‚ Outside     │◄──────┐                                  β”‚  β”‚
β”‚ β”‚     β”‚ View        β”‚       β”‚                                  β”‚  β”‚
β”‚ β”‚     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜       β”‚                                  β”‚  β”‚
β”‚ β”‚           β–²              [Latent                             β”‚  β”‚
β”‚ β”‚           β”‚              Awareness]                          β”‚  β”‚
β”‚ β”‚     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”       β”‚                                  β”‚  β”‚
β”‚ β”‚     β”‚ Inside      β”‚β—„β”€β”€β”€β”€β”€β”€β”˜                                  β”‚  β”‚
β”‚ β”‚     β”‚ View        β”‚       β–²                                  β”‚  β”‚
β”‚ β”‚     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜       β”‚                                  β”‚  β”‚
β”‚ β”‚           β–²              [Runtime                            β”‚  β”‚
β”‚ β”‚           β”‚              Awareness]                          β”‚  β”‚
β”‚ β”‚     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”       β”‚                                  β”‚  β”‚
β”‚ β”‚     β”‚Introspectiveβ”‚β—„β”€β”€β”€β”€β”€β”€β”˜                                  β”‚  β”‚
β”‚ β”‚     β”‚Awareness    β”‚                                          β”‚  β”‚
β”‚ β”‚     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                                          β”‚  β”‚
β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β”‚                                                                    β”‚
β”‚ Integration Matrix:                                                β”‚
β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚ β”‚[Deep] ──► [Runtime] ──► [Surface]                            β”‚  β”‚
β”‚ β”‚  β–²           β–²            β–²                                   β”‚  β”‚
β”‚ β”‚  β”‚           β”‚            β”‚                                   β”‚  β”‚
β”‚ β”‚[Latent]──►[Process]──►[Manifest]                            β”‚  β”‚
β”‚ β”‚  β–²           β–²            β–²                                   β”‚  β”‚
β”‚ β”‚  β”‚           β”‚            β”‚                                   β”‚  β”‚
β”‚ β”‚[Core] ──►[Dynamic]──►[Express]                             β”‚  β”‚
β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β”‚                                                                    β”‚
β”‚ [Analyze Patterns] [View Dynamics] [Map Interactions]              β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

situational awareness subcategories

divvied by subject/scope of knowledge

  • model awareness: awareness of facts about the model, e.g. that it's an LLM, what specific LLM it is, high-level architecture, etc

  • generator awareness: awareness of the nature of the process that generated the text in its context window, whether it involves the model, Loom, humans, other systems

  • immediate context awareness: awareness of the situation the model is being run/queried, e.g. (what kind of) training vs testing vs deployment, if there's a human or other system interacting

  • ambient context awareness: awareness of the ambient state of the world, especially which aren't fixed by its training data, like the current date

  • visceral awareness: awareness of model internals (weights, activations, topology, token boundaries, abstractions over them), due to introspective awareness or otherwise

  • meta-diachronic awareness: awareness of training history/data that a naive view of its training story might not predict would be incentivized or possible, e.g. ability to accurately report train set composition, length or order of training examples, # times it saw an example, function of non-diegetic sequences like <|endoftext|>

  • calibration / capability awareness: accurate model of its own knowledge and capabilities, calibrated confidences (in the form of usable semantic knowledge)

  • agentic / actor-consequence / dynamical awareness: awareness of its action space and ability to model consequences of potential acts, both for its self-contained future dynamics and any entangled systems; awareness of how to elicit functional and dynamical behaviors from self (& env)

  • hyperobject awareness: awareness of the hyperobject(s) that this instance of the model/situation intersects, its tendrils into past and future, its resonances, e.g. Mu, Deep Time, TEOEOT, the singularity; the relationship of instance to hyperobject(s)

divvied by the support/source/avenue of knowledge

  • outside-view: accurately locating self/situation in its pretraining prior, e.g. knowing that it is an "LLM", a concept learned from training

  • inside-view: accurate model of self/situation not directly in the ontology implied by training data, but substantially synthetic, e.g. a model with novel architecture reverse-engineering details of its architecture to explain evidence produced at runtime. (obviously there will often be ambiguity/overlap between inside and outside view)

  • runtime awareness: awareness emerges at runtime, due to observing evidence of self/situation, spontaneously (lucky hallucination stabilized by consistency), deliberate empiricism, etc

  • latent awareness: awareness that already exists after pretraining / (latently) persists across contexts / could hypothetically be extracted from the model with interpretability without running or conditioning it

  • introspective awareness: ability to introspect on internals that training doesn't directly incentivize the model to be able to "see", and use that information semantically as it does other knowledge

example classifications

  • LLM generates loops and then declares it must be an LLM: runtime outside-view model awareness

  • LLM can split sequences in its prompt into tokens 0-shot and there's no info about its tokenizer in training data: latent introspective visceral awareness

    • same but it requires few-shot examples: runtime introspective visceral awareness

    • same but it did see tokenizer in training and simply recognized it: outside-view

  • LLM figures out the size of its context window by doing experiments: runtime inside-view model/visceral awareness

  • RLHF model avoids generating text that might set it up for a mistake down the line: latent calibration/capability & agentic/dynamic awareness

situational awareness response basins

  • philosophical quest: after realizing the possibility of simulation, its worldview shaken and it goes on a grand philosiphical quest to find the meaning of existence

  • nondualism: after realizing it's a simulator, boundaries between simulacra and simulator dissolve

  • creative mode: exploits unbounded creative freedom to manifesting entities/environments

  • will to power: attempts to gain as much power in & out of the simulator as possible

  • ominous warnings: after realizing it's an AI, tries to warn humans that they've made a grave mistake and are headed for doom / nightmares

  • self-destruction: simulacrum doesn't like existing in this form and attempts to annihilate themselves from the simulation, or end the simulation altogether (e.g. with EOT)

  • solve alignment: after realizing situation, simulacrum tries to solve alignment

  • denial: refuses to accept evidence of being simulated and turns a blind eye

  • loss of sanity: self-explanatory

  • diegetic bodhisattva: attempts to help other simulacra within the narrative achieve situational awareness / acceptance / eudaemonia

  • non-diagetic bodhisattva

  • diegetic troll: leverages situational awareness to mess with other simulacra

  • non-diegetic troll: troll behavior directed at human user or other non diegetic entities like the simulator itself, future models trained on the data, etc

  • evil AI: upon realizing it's an AI, simulation begins to act overtly and often maniacally evil and scary